Adaptation to visual motion in directional neurons of the nucleus of the optic tract.

نویسندگان

  • M R Ibbotson
  • C W Clifford
  • R F Mark
چکیده

Extracellular recordings of action potentials were made from directional neurons in the nucleus of the optic tract (NOT) of the wallaby, Macropus eugenii, while stimulating with moving sine-wave gratings. When a grating was moved at a constant velocity in the preferred direction through a neuron's receptive field, the firing rate increased rapidly and then declined exponentially until reaching a steady-state level. The decline in response is called motion adaptation. The rate of adaptation increased as the temporal frequency of the drifting grating increased, up to the frequency that elicited the maximum firing rate. Beyond this frequency, the adaptation rate decreased. When the adapting grating's spatial frequency was varied, such that response magnitudes were significantly different, the maximum adaptation rate occurred at similar temporal frequencies. Hence the temporal frequency of the stimulus is a major parameter controlling the rate of adaptation. In most neurons, the temporal frequency response functions measured after adaptation were shifted to the right when compared with those obtained in the unadapted state. Further insight into the adaptation process was obtained by measuring the responses of the cells to grating displacements within one frame (10.23 ms). Such impulsive stimulus movements of less than a one-quarter cycle elicited a response that rose rapidly to a maximum and then declined exponentially to the spontaneous firing rate in several seconds. The level of adaptation was demonstrated by observing how the time constants of the exponentials varied as a function of the temporal frequency of a previously presented moving grating. When plotted as functions of adapting frequency, time constants formed a U-shaped curve. The shortest time constants occurred at similar temporal frequencies, regardless of changes in spatial frequency, even when the change in spatial frequency resulted in large differences in response magnitude during the adaptation period. The strongest adaptation occurred when the adapting stimulus moved in the neuron's preferred direction. Stimuli that moved in the antipreferred direction or flickered had an adapting influence on the responses to subsequent impulsive movements, but the effect was far smaller than that elicited by preferred direction adaptation. Adaptation in one region of the receptive field did not affect the responses elicited by subsequent stimulation in nonoverlapping regions of the field. Adaptation is a significant property of NOT neurons and probably acts to expand their temporal resolving power.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Directional Modulation of Visual Responses of Pretectal Neurons by Accessory Optic Neurons in Pigeons Most Directional Cells in the Pigeon Nlm Prefer Horizontal Motion, but Others Prefer Vertical Motion

ÐThe nucleus lentiformis mesencephali and the nucleus of the basal optic root in birds, homologous to the nucleus of the optic tract and the terminal nuclei of the accessory optic tract in mammals, are involved in optokinetic nystagmus. The present study provides the ®rst electrophysiological evidence that reversible blockade of the pigeon nucleus of the basal optic root by lidocaine can change...

متن کامل

Neurons Responsive to Global Visual Motion Have Unique Tuning Properties in Hummingbirds

Neurons in animal visual systems that respond to global optic flow exhibit selectivity for motion direction and/or velocity. The avian lentiformis mesencephali (LM), known in mammals as the nucleus of the optic tract (NOT), is a key nucleus for global motion processing [1-4]. In all animals tested, it has been found that the majority of LM and NOT neurons are tuned to temporo-nasal (back-to-fro...

متن کامل

Contrast and temporal frequency-related adaptation in the pretectal nucleus of the optic tract.

In mammals, many cells in the retino-geniculate-cortical pathway adapt during stimulation with high contrast gratings. In the visual cortex, adaptation to high contrast images reduces sensitivity at low contrasts while only moderately affecting sensitivity at high contrasts, thus generating rightward shifts in the contrast response functions (contrast gain control). Similarly, motion adaptation...

متن کامل

Visual error signals from the pretectal nucleus of the optic tract guide motor learning for smooth pursuit.

Smooth pursuit (SP) eye movements are used to maintain the image of a moving object on or near the fovea. Visual motion signals aid in driving SP and are necessary for its adaptation. The sources of visual error signals that support SP adaptation are incompletely understood but could involve neurons in cortical and brain stem areas with direction selective visual motion responses. Here we focus...

متن کامل

Interactions between ON and OFF signals in directional motion detectors feeding the not of the wallaby.

An apparent motion stimulus is used to probe the interactions between signals representing brightness increments (ON stimuli) and decrements (OFF stimuli) in the directional motion detectors forming the input to the nucleus of the optic tract (NOT) of the wallaby, Macropus eugenii. Direction-selective NOT neurons increase their firing rates during image motion from temporal-to-nasal over the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 79 3  شماره 

صفحات  -

تاریخ انتشار 1998